
Chapter 6: Linear Model Selection and Regularization

 As p (the number of predictors) comes close to or exceeds n (the 
sample size) standard linear regression is faced with problems.

 The variance of the estimates gets large and in the case of p>n no 
solution is possible.

 Reducing the number of predictors would then both improve the 
statistical properties of the regression estimates but would also 
simplify the model making its interpretation easier.



Main Topics

 Subset Selection: there are several approaches to reducing the 
number of predictor variables and then doing normal linear 
regression.

 Shrinkage: If we use all p predictors then some methods will shrink 
(also called regularization) the magnitude of the predictor. This 
may entail a small increase in bias with a large reduction in 
variance.

 Dimension reduction: We may create linear combinations of the p
predictors or project them onto a subspace of smaller 
dimensionality. Both techniques will reduce the number of 
predictors prior to normal linear regression.



Subset Selection

 The best subset selection looks at all 2p models using the following 
algorithm.

 (1) Let ℳ0 be the null model with no parameters.
(2) for k=2, ..,p fit all 𝑝𝑝𝑘𝑘 (= 𝑝𝑝!

𝑝𝑝−𝑘𝑘 !𝑘𝑘!
) models. Pick the best (ℳ𝑘𝑘) 

based on the smallest RSS or largest R2.
(3) Select the best among ℳ0, … ,ℳ𝑝𝑝 using cross-validation (MSE), 
Cp, AIC, BIC, or adjusted R2.

 Using R2 is OK at step (2) since all models have the same number 
of parameters.



Subset Selection

 For logistic-regression we can use the deviance in place of RSS. 
The deviance is -2 times the log-likelihood of the model. The 
smaller the better.

 The main drawback is the number of models that must be 
examined. For p=20 it is over one million.

 For least-squares models there are some shortcuts to fitting all 
possible models but it still becomes difficult for large p.

 Stepwise selection is computationally more efficient.



Stepwise Selection: forward selection
 Forward stepwise selection: this method starts with no predictors 

and add them one at a time.
(1) Let ℳ0 be the null model with no predictors
(2) for k= 0, …,p-1, consider all p-k models by adding one 
parameter to ℳ𝑘𝑘. Choose the best model (ℳ𝑘𝑘+1) based on the 
smallest RSS or largest R2.
(3) Select the single best model among ℳ0, … ,ℳ𝑝𝑝 using cross-
validation (MSE), Cp, AIC, BIC, or adjusted R2.

 As before all the models compared at step (2) have the same 
number of parameters so using RSS or R2 is OK.



Stepwise Selection: forward selection

 The total number of models fitted is now only 1+p(p+1)/2. So
when p=20 we fit 211 not one million!

 We are not guaranteed to get the best model. If p=3, the best 
single variable model might be X1, but the best model using 2 
variables is X2 plus X3 which will be missed by forward selection.

 Although we can start the forward selection algorithm even if p>n
we can only go up to ℳ𝑛𝑛−1.



Stepwise Selection: backward selection

 Algorithm
(1) Let ℳ𝑝𝑝 be the full model with all p predictors.
(2) For k=p, p-1, …,1: fit all k models with one less predictor than 
used in ℳ𝑝𝑝. Choose the best model (ℳ𝑘𝑘−1) based on the smallest 
RSS or largest R2.
(3) Select the single best model among ℳ0, … ,ℳ𝑝𝑝 using cross-
validation (MSE), Cp, AIC, BIC, or adjusted R2.

 The same number of models are fit as with forward selection. 
However, we must have p<n.



Choosing the Optimal Model

 We know the training MSE is an underestimate of the test MSE. 
 Two different approaches,

(1) Make adjustments to the training error to correct for the bias.
(2) Directly estimate the test error with a validation set or cross-
validation.





Cp, AIC, BIC, and Adjusted R2

 Mallow’s Cp = 1
𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅 + 2𝑑𝑑 �𝜎𝜎2 , where d is the number of predictors

 AIC= 1
𝑛𝑛�𝜎𝜎2

𝑅𝑅𝑅𝑅𝑅𝑅 + 2𝑑𝑑 �𝜎𝜎2 for least squares AIC and Cp are proportional 
to each other.

 BIC = 1
𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅 + log(𝑛𝑛)𝑑𝑑 �𝜎𝜎2 , n>7 log(n)>2 so BIC will be greater that 

2 and thus more conservation than Cp and AIC.

 Adjusted R2 = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅/(𝑛𝑛−𝑑𝑑−1)
𝑇𝑇𝑅𝑅𝑅𝑅/(𝑛𝑛−1)

, the adjusted R2 will no longer always 
increase with d like the R2 does.

 Except for the Adjusted R2 the other measures have a strong 
theoretical basis.



Cp, AIC, BIC, and Adjusted R2

The best model is at the minimum of Cp and BIC (AIC) and the maximum of
the adjusted R2. For the credit data BIC indicates an optimum with fewer predictors
than Cp.
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Validation Set and Cross-Validation

The same credit data which in this case gives the same optimum for the validation set
and cross-validation. James et al. propose the 1 standard deviation rule. Calculate the
standard deviation of the test MSE. After identifying the minimum see if plus 1 standard
deviation includes the test MSE for fewer predictors



Shrinkage Methods: Ridge Regression
 Minimize 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗2

 λ is called the tuning parameter. 𝜆𝜆∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 is called the shrinkage 

penalty.
 When λ =0, then the ridge estimators are just the normal least 

squares estimates.
 As 𝜆𝜆 → ∞ the penalty grows and the ridge estimates approach 0.
 For each 𝜆𝜆 there is a different set of regression parameters, �̂�𝛽𝜆𝜆𝑅𝑅.
 The ridge estimator, �̂�𝛽𝜆𝜆𝑅𝑅, depends on both λ and the scale used to

measure each feature. Thus, it is recommended that features be 
scaled by dividing each with their standard deviation.

 The penalty function does not include the intercept, β0.
 James et al. don’t talk about this directly but when p>n then there 

may be no unique solution to the ridge minimization formula.



Shrinkage Methods: Ridge Regression

||β||2 is called the l2 norm and equals ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2. So, the x-axis can be thought  of as a 

measure of the relative amount of shrinkage, which decreases to the right until equal to
1 which is no shrinkage. Standardized coefficients are derived from features that have been
scaled (use the scale function in R).



Why does ridge regression work?

Using simulated data with n=50 and p=45, the MSE (top purple? line) for the ridge estimator,
the squared bias (black) and the variance (green) are shown. The LSE show a very large
variance which is decreased substantially by the ridge estimator. Ridge regression does not
eliminate predictors, at best they get assigned very small coefficients.
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The Lasso
 The lasso can set some predictor coefficients to 0 and thus 

effectively aid with variable selection. The penalty function uses an 
l1 norm instead of an l2 norm squared. The �̂�𝛽𝜆𝜆𝐿𝐿 lasso coefficients 
satisfy,

𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗

 As with the ridge estimates as λ gets larger the coefficients shrink 
towards 0 but now some may equal be 0. Thus, we say the lasso 
yields sparse models.

 By convex duality you can shown when p>n there can be at most n
non-zero lasso coefficients! (see Rosset & Zhu, 2007. Piecewise 
linear regularization paths. Ann. Stat. 35:1012-1030)

 When p>n there may not be a unique solution.



The Lasso

Credit data. The number of predictors in the final model is a function of λ. In the right
figure as you move to the right “Rating” is the first variable to come into the model followed
by “Student” and “Limit”.



The Lasso

 An alternative way to write solutions for the ridge and lasso 
estimates are,

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
𝛽𝛽 𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 �

𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗2 ≤ 𝑠𝑠

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
𝛽𝛽 𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 �

𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗 ≤ 𝑠𝑠

 For every value of λ there is a corresponding value of s.



The Lasso

The regions demarcated by s for the lasso (left) and ridge estimators (right) are where the 
solutions must reside. �̂�𝛽 is the least squares estimate. The ellipses are regions of constant 
RSS and get larger as you move away from �̂�𝛽. The solutions for the lasso will often hit a vertex 
of the region which results in one or more parameters being set to 0. 



The Lasso

This simulation has p=45, n=50, but now only 2 of the predictors are related to 
the response. On the right are the lasso (solid) and ridge (dashed) estimator properties. 
The lasso outperforms the ridge estimators in this case since the ridge estimator will always
maintain some estimate for every feature even if they are really zero.
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Lasso and Ridge 

Consider a simple model, no intercept, n=p, X a diagonal matrix =I. Then the

ridge solution is �̂�𝛽𝑗𝑗𝑅𝑅 = 𝑦𝑦𝑗𝑗/(1 + 𝜆𝜆) and the lasso is �̂�𝛽𝑗𝑗𝐿𝐿 =

𝑦𝑦𝑗𝑗 −
𝜆𝜆
2
𝑖𝑖𝑓𝑓 𝑦𝑦𝑗𝑗 > 𝜆𝜆/2

𝑦𝑦𝑗𝑗 + 𝜆𝜆
2
𝑖𝑖𝑓𝑓 𝑦𝑦𝑗𝑗 < −𝜆𝜆/2

0 𝑖𝑖𝑓𝑓 𝑦𝑦𝑗𝑗 ≤ 𝜆𝜆/2
Ridge estimators are shrunk by the same proportion while lasso estimators are shrunk towards
zero by the same amount and when close to zero are shrunk exactly to 0.

Soft thresholding



Choosing λ

Using the leave-one-out cross validation ridge regression was applied to the credit data.
The optimal λ is small and results in a modest reduction in the MSE and magnitude of the
coefficients. Perhaps the original least square estimates are not that bad.

ALGORITHM: choose a grid of λ values and then use cross validation to find the λ that gives the 
minimum MSE. Then at that λ use the entire data set to estimate the coefficients.



Choosing λ

Lasso applied to the simulated data with p=45 but only two that affect the outcome.
Now the optimal λ results in two non-zero coefficients which were the two that affect the
outcome.
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